Джон Непер





Джон Непер (1550—1617) — шотландский барон (8-й лэрд Мерчистона), математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц.

Биография



Мерчистон, родовой замок Непера

В ранней молодости, тотчас же по окончании курса в Сент-Эндрюсском университете, куда он поступил в 1563 году, Непер совершил путешествие по Германии, Франции и Италии, из которого вернулся на родину в 1571 году. Поселившись в своем родном замке и женившись в том же году, он затем уже никогда не оставлял Шотландии.

Всё его время было посвящено занятиям богословскими предметами и математикой. По его собственным словам, истолкование пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом.

Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — таблицы логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя.

Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив их вычисления.

В честь Джона Непера названы: кратер на Луне; астероид 7096 Непер (1992 год); логарифмическая безразмерная единица, измеряющая отношение двух величин; университет в Эдинбурге (Edinburgh Napier University).

Открытие логарифмов

Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание.

В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов», на латинском языке (56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1′.

Сочинение разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.

В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю.

Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега появилось только в 1857 году в Берлине (таблицы Бремивера).



В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера.

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.



Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения (палочки Непера).

Применение и развитие теория логарифмов нашла в рекурсивных алгоритмах, теории фракталов, в теории чисел и математическом анализе, в статистике и теории вероятностей, информатике и вычислительной технике, механике и физике, химии, теории музыки, психологии и философии.