История геометрии



Традиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом.

Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием.

Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637). Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии.

Геометрия — одна из наиболее древних математических наук. Первые геометрические тексты имеются в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до н.э.).

Еще в древности геометрия превратилась в дедуктивную, строго логическую науку, построенную на основе системы аксиом. Она непрерывно развивалась, обогащалась новыми теоремами, идеями, методами. Интересы геометров и направления их научных исследований порою менялись в процессе исторического развития этой науки, поэтому нелегко дать точное и исчерпывающее определение, что такое геометрия сегодня, каков ее предмет, содержание и методы.

Евклид.

В III в. до н. э. древнегреческий ученый Евклид написал книгу под названием «Начала». В этой книге Евклид подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет всюду преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида.
Продуманное и глубоко логическое изложение геометрии, данное в книге Евклида, привело к тому, что математики не мыслили возможности существования геометрии, отличной от евклидовой. Лишь в XIX в. благодаря в первую очередь трудам выдающегося русского математика Н. И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной.
Часто идеи, обогащающие математику новыми понятиями и методами, приходят из физики, химии и других разделов естествознания. Типичным примером может служить понятие вектора пришедшее в математику из механики. В отношении неевклидовых геометрий обстоит как раз наоборот: созданные внутри математики эти новые геометрические понятия положили пути создания современной физики.


Много нового появилось со времен Евклида и в самой евклидовой геометрии. Еще в XVII в. благодаря работам французского математика и философа Р. Декарта возник метод координат, ознаменовавший собой революционную перестройку всей математики, и в частности геометрии. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так в рамках евклидовой геометрии появилась ее новая ветвь — аналитическая геометрия.
В работах математиков XIX в. У. Гамильтона, Г. Грассмана и других были введены векторы, которые ранее в трудах Архимеда, Г. Галилея и других имели лишь механический смысл, а теперь приобрели права в математике.
Другим важным обогащением, которым геометрия также обязана XIX в., стало создание теории геометрических преобразований, и в частности движений (перемещений). У Евклида движения неявно присутствовали; например, когда он говорил: «Наложим один треугольник на другой таким-то образом», то речь шла в действительности о применении движения, перемещения треугольника.

Пифагорова тройка

Пифагорова тройка из трёх натуральных чисел (x,y,z)удовлетворяет соотношению Пифагора: x2+y2=z2. При этом числа, образующие пифагорову тройку, называются пифагоровыми числами. Треугольник, длины сторон которого равны пифагоровым числам, является прямоугольным. Простейший из них — египетский треугольник со сторонами 3,4,5: 32+42=52.

Некоторые пифагоровы тройки : (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34),(21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14, 48, 50), (30, 40, 50), …Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.

Неевклидова геометрия

В геометрии Евклида имеется аксиома о параллельных, утверждающая: через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной. Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно. Лобачевский пришёл к мысли, что такое доказательство невозможно. Утверждение, противоположное аксиоме Евклида, гласит: через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые. Это и есть аксиома Лобачевского. По мысли Лобачевского, присоединение этого положения к другим основным положениям геометрии приводит к логически безупречным выводам. Система этих выводов и образует новую, неевклидову геометрию.
Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую геометрию, логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям.
Геометрия превратилась в разветвлённую и быстро развивающуюся в разных направлениях совокупность математических теорий, изучающих разные пространства (евклидово, Лобачевского, проективное, римановы и т. д.) и фигуры в этих пространствах.