Дружественные числа

Дру́жественные чи́сла два различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и наоборот, сумма всех собственных делителей второго числа равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Большого значения для теории чисел эти пары не имеют, но являются любопытным элементом занимательной математики.

История

Дружественные числа были открыты последователями Пифагора, которые, однако, знали только одну пару дружественных чисел — 220 и 284.

Дружественные числа 284 и 220  имеют соответствующую сумму делителей: 1+2+4+5+10+11+20+22+44+55+110 = 284

и               1+2+4+71+142 = 220,

Формулу для нахождения некоторых пар дружественных чисел предложил примерно в 850 году арабский астроном и математик Сабит ибн Курра (826—901). Его формула позволила найти две новые пары дружественных чисел. Много столетий спустя Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них — 17296 и 18416. Но общего способа нахождения таких пар нет до сих пор.

Неизвестно, конечно или бесконечно количество пар дружественных чисел. Известно 11.994.387 пар дружественных чисел. Все они состоят из чисел одной чётности. Существует ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа.

Примеры:

Ниже приведены все пары дружественных чисел, меньших 100 000.

  1. 220 и 284 (Пифагор, около 500 дон. э.)
  2. 1184 и 1210 (Паганини, 1860)
  3. 2620 и 2924 (Эйлер, 1747)
  4. 5020 и 5564 (Эйлер, 1747)
  5. 6232 и 6368 (Эйлер, 1750)
  6. 10744 и 10856 (Эйлер, 1747)
  7. 12285 и 14595 (Браун, 1939)
  8. 17296 и 18416 (Ибн ал-Банна, около 1300, Фариси, около 1300, Ферма, Пьер, 1636)
  9. 63020 и 76084 (Эйлер, 1747)
  10. 66928 и 66992 (Эйлер, 1750)
  11. 67095 и 71145 (Эйлер, 1747)
  12. 69615 и 87633 (Эйлер, 1747)
  13. 79750 и 88730 (Рольф (Rolf), 1964)