Величайший древнегреческий математик и механик.
Жизнь Архимеда. Уроженец греческого города Сиракузы на острове Сицилия, Архимед был приближенным управлявшего городом царя Гиерона (и, вероятно, его родственником). Возможно, какое-то время Архимед жил в Александрии — знаменитом научном центре того времени. То, что сообщения о своих открытиях он адресовал математикам, связанным с Александрией, например Эратосфену, подтверждает мнение о том, что Архимед являлся одним из деятельных преемников Эвклида, развивавших математические традиции александрийской школы. Вернувшись в Сиракузы, Архимед находился там вплоть до своей гибели при захвате Сиракуз римлянами в 212 г. до н.э.
Дата рождения Архимеда (287 г. до н.э.) определяется исходя из свидетельства византийского историка 12 в. Иоанна Цеца, согласно которому он «прожил семьдесят пять лет». Яркие картины его гибели, описанные Ливием, Плутархом и Валерием Максимом, различаются лишь в деталях, но сходятся в том, что Архимеда, занимавшегося в глубокой задумчивости геометрическими построениями, зарубил римский воин. Кроме того, Плутарх сообщает, что Архимед, «как утверждают, завещал родным и друзьям установить на его могиле описанный вокруг шара цилиндр с указанием отношения объема описанного тела к вписанному», что было одним из наиболее славных его открытий. Цицерон, который в 75 г. до н.э. был на Сицилии, обнаружил выглядывавшее из колючего кустарника надгробие и на нем — шар и цилиндр.
Легенды об Архимеде. В наше время имя Архимеда связывают главным образом с его замечательными математическими работами, однако в античности он прославился также как изобретатель различного рода механических устройств и инструментов, о чем сообщают авторы, жившие в более позднюю эпоху. Считается, что Архимед был изобретателем т.н. архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов, хотя, судя по всему, такого рода устройство использовалось и раньше. Плутарх в Жизнеописании Марцелла говорит, что в ответ на просьбу царя Гиерона продемонстрировать, как тяжелый груз может быть сдвинут малой силой, Архимед «взял трехмачтовое грузовое судно, которое перед этим с превеликим трудом вытянули на берег много людей, усадил на него множество народа и загрузил обычным грузом. После этого Архимед сел поодаль и стал без особых усилий тянуть на себя канат, перекинутый через полиспаст, отчего судно легко и плавно, словно по воде, «поплыло» к нему». Именно в связи с этой историей Плутарх приводит замечание Архимеда, что, «если бы имелась иная Земля, он сдвинул бы нашу, перейдя на ту» (более известный вариант этого высказывания сообщает Папп Александрийский: «Дайте мне, где стать, и я сдвину Землю»). Еще одна легенда: царь Гиерон поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. «Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: «Эврика! Эврика!» (греч. «Нашел! Нашел!»)».
Архимеду принадлежало сочинение Об изготовлении [небесной] сферы, речь в котором шла, вероятно, о построении модели планетария, воспроизводившей видимые движения Солнца, Луны и планет, а также, возможно, звездного глобуса с изображением созвездий. Во всяком случае Цицерон сообщает, что тот и другой инструмент захватил в Сиракузах в качестве трофеев Марцелл. Наконец, Полибий, Ливий, Плутарх и Цец сообщают о грандиозных баллистических и иных машинах, построеннных Архимедом для отражения римлян.
Математические труды. Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволинейных фигур или тел. Сюда относятся трактаты О шаре и цилиндре, Об измерении круга, О коноидах и сфероидах, О спиралях и О квадратуре параболы. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигур, О плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теорем, Исчисление песчинок, Задача о быках и сохранившийся лишь в отрывках Стомахион. Существует еще одна работа — Книга о предположениях (или Книга лемм), сохранившаяся лишь в арабском переводе. Хотя она и приписывается Архимеду, в своем нынешнем виде она явно принадлежит другому автору (поскольку в тексте имеются ссылки на Архимеда), но, возможно, здесь приведены доказательства, восходящие к Архимеду. Несколько других работ, приписываемых Архимеду древнегреческими и арабскими математиками, утеряны.
Дошедшие до нас работы не сохранили своей первоначальной формы. Так, судя по всему, I книга трактата О равновесии плоских фигур является отрывком из более обширного сочинения Элементы механики; кроме того, она заметно отличается от II книги, написанной явно позднее. Доказательство, упоминаемое Архимедом в сочинении О шаре и цилиндре, было утрачено ко 2 в. н.э. Работа Об измерении круга сильно отличается от первоначального варианта, и предложение II в ней скорее всего заимствовано из другого сочинения. Заглавие О квадратуре параболы вряд ли могло принадлежать самому Архимеду, так как в его время слово «парабола» еще не использовалось в качестве названия одного из конических сечений. Тексты таких сочинений, как О шаре и цилиндре и Об измерении круга, скорее всего, подвергались изменениям в процессе перевода с дорийско-сицилийского на аттический диалект.
Архимед смог доказать различные теоремы, эквивалентные в современной записи соотношениям S = 4πr2 для площади поверхности шара, V = 4/3πr3 для его объема.
В сочинении, известном под названием Исчисление песчинок, Архимед излагает оригинальную систему представления больших чисел. Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную.
В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь.
В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил. Все доказательство от начала и до конца пронизано идеей геометрической симметрии.
В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело. В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому «всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость».
Значение работ Архимеда. Работы Архимеда и комментарии Эвтокия изучали и преподавали математики Анфимий из Тралл и Исидор из Милета, архитекторы собора св. Софии, возведенного в Константинополе в правление императора Юстиниана. Реформа преподавания математики, которую проводил в Константинополе в 9 в. Лев Фессалоникийский, по-видимому, способствовала собиранию работ Архимеда. Тогда же он стал известен мусульманским математикам. Теперь мы видим, что арабским авторам недоставало некоторых наиболее важных работ Архимеда, таких как О квадратуре параболы, О спиралях, О коноидах и сфероидах, Исчисление песчинок и О методе. Но в целом арабы овладели методами, изложенными в других работах Архимеда, и нередко блестяще ими пользовались.
Средневековые латиноязычные ученые впервые услышали об Архимеде в 12 в., когда появились два перевода с арабского на латынь его сочинения Об измерении круга. После 1544 г. известность Архимеда начала возрастать, и его методы оказали значительное влияние на таких ученых, как Симон Стевин и Галилей, а тем самым, хотя и косвенно, воздействовали на формирование современной механики.